MAI Impact

Koordinator

Dr. Christian Seidel

Projektvolumen

1,3 million €

Laufzeit

01.03.2016 – 30.06.2017

Projektpartner
  • Siemens AG
  • Airbus Defence and Space GmbH
  • Engineering System International GmbH
  • SGL CARBON GmbH
  • Technische Hochschule Ingolstadt

Faserverbundkunststoffe resistent gegen Hochgeschwindigkeitsbelastungen

Faserverbundwerkstoffe finden aufgrund ihres hohen Potentials zur Realisierung von gewichtsoptimierten und effizienten Lösungen beispielsweise Anwendung im Flugzeug- und Fahrzeugbau. Neben vorteilhaften Festigkeiten und Steifigkeiten zeigen konventionelle Verbundstrukturen aber Schwachpunkte gegenüber Querbelastungen. Neben Vogel- und Hagelschlägen in der Luftfahrt existieren ähnliche Fragestellungen in der schienengebundenen Mobilität, beispielsweise bei Schwingungsbelastungen elektrischer Anlagen. Diese Problemstellungen könnten über vergleichbare Materiallösungen adressiert werden, jedoch ist aufgrund geringer Erfahrungen eine Vorhersagbarkeit für den Lastfall nur eingeschränkt möglich.
Hier setzt das Verbundvorhaben MAI Impact an: Im Rahmen des Projektes sollen für derartige Hochgeschwindigkeits- und Schwingungsbelastungen verbesserte Werkstoffkonzepte erarbeitet und eine Anwendungsüberführung für Leichtbaukonstruktionen der Flügelvorderkante, einer Zugunterstruktur oder von Gehäusen für Generatoren oder Motoren vorbereitet werden. Dafür sollen zum einen Resultate von sogenannten „Beschussversuchen“ konventioneller Werkstoffe mit entsprechenden Simulationsergebnissen abgeglichen und die Materialien dementsprechend angepasst werden. Zum anderen sollen innovative partikelmodifizierte Lösungen und Faserverbundarchitekturen betrachtet und ihr Anwendungspotential abgeschätzt werden, sodass sicherere und schnellere Produktdesignketten möglich werden können.

Abbildung: Hochgeschwindigkeitsbelastungstest mittels einer Beschussanlage und Simulationsabgleich für Lastfälle im Luft- und Schienenverkehr (Quelle: Siemens AG).

Die methoden- und materialinnovativen Lösungsansätze im Vorhaben MAI Impact können so einen wertvollen Beitrag zur Herstellung belastungsresistenter Werkstoffe und kostengünstiger CFK-Bauteile leisten. Die Arbeiten sind somit ein wesentlicher Bestandteil für die Zielsetzung des BMBF-Spitzenclusters MAI Carbon und für den Aufbau von innovativen CFK-Fertigungstechnologien und –Prozessketten in Deutschland.